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ABSTRACT

The paper addresses the basic notions of the theory of feedback and
adaptive finite element methods. An illustrative example of the finite

element method for solving nonlinear differential equation of the elliptic

type is presented. Numerical example of regridding process is given.
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1. INTRODUCTION

‘The notion of feedback and adaptivity in numerical computations has
attracted great attention in the recent years. All the modern ODE”s solvers
for initial value problems and quadratures are feedback methods. The feedback
methods are increasingly in the focus of interest in the area of numerical
solution of PDE and computational mechanics. Many reports; preprints and
papers dealing with the adaptivity appeared recently. It seems to be that
successful computation of today”s large complex problems cannot be made with-
out some kind of feedback or adaptive approach.

In general we call a numerical process a feedb;;k process when it uses
the data in a sequential way so that the flow of computation is determined by
some feedback from the previous information obtained during the computation
(see eg. [18] [19] [20]). However, such a feedback procedure is advantageous
only if it has some useful properties, for example, if it produces the re-
quired information by less work and higher reliability than the nonadaptive
process. In order to study the adaptive procedures, more precise definition
of the used notions has to be introduced, see eg. [1] [3] [16].

It is worthwhile to distinguish between the feedback and adaptive
procedures. A feedback procedure (method) is said to be adaptive if it is
optimal with respect to certain performance measure; hence the adaptivity is a
relative notion.

The analysis of a method, adaptive or nonadaptive, needs an exact
description of the class of problems which the method is designed for. The
comparison of a feedback and nonfeedback approach is also relative to the set
of the problems under consideration. It has been shown that if the class of

the problems is big enough, then in the worst case for the class (or even in

the average case) the nomfeedback methods are as good as the adaptive
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methods. See e.g. [18] [20]. 1In this case one can conclude that the non-
feedback method will be computationally more efficient than the feedback one
(especially for parallel computation). On the other hand, as experience
shows, for the majority of practically important classes of problems adaptive
methods perform much better, they are more effective and reliable than the

nonadaptive ones.

2. FEEDBACK AND ADAPTIVITY

We discuss now the notion of feedback and adaptivity in numerical compu-
tation in more detail. These concepts were discussed in connection with the
finite element method in [1] [9]. For a more general concept see [16].

We will illustrate the introduced notions on simple example of the two

point boundary value problem:

(2.1a) -(au”)" + bu = f

(2.1b) w(0) = uw(l) = 0

where the aim is to find the approximate solution with a sufficient accuracy
measured in the energy norm.

We will i1llustrate the introduced notions in the connection with the h-
version of the finite element method (with elements degree p = 1).

In general, let P be the class of problems to be solved. (In our case

this class is characterized by class of functions (a, b, £).)

Denote by S the set of numerical solutions. (The set of all piecewise
linear functions of Hé.)
An algorithm is a mapping which maps the set of problems P into the set

S . More precisely, an algorithm relates to an information operator N which

may be referred to a set of subroutines such that the information needed by
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the algorithm may be computed for the given problem P (e.g. the evaluation
of a, b, f). It should be noticed that the information is, in general, only
partial, (Values of a, b, £ can be computed at certain points and with
certain precision only.)

There are two kinds of information operator (see [18] [20]); the first is
the non-feedback one (in {18] it 1s called non-adaptive information), which
uses no information of computed results of the solution (e.g. when using a
uniform mesh). The other is the feedback information operator which uses
sequentially the information obtained earlier (e.g. the solution on the pre-

viously used meshes). However, no matter what kind of information is used, an

algorithm produces a sequence of states (the sequence of meshes) and a

sequence of corresponding solutions (the finite element solutions). The pairs
of the states and solutions compose the trajectory of the algorithm. Often we
also say that the sequence of the states is the trajectory. The map mapping

the previous states into a new state is called a transition operator construc-

tion of the new mesh from the old ones). In the non-feedback process the
transition operator of course makes no use of the previous states. The algo-
rithm 13 completely described by the structure of the transition operator,
In summary a numerical procedure consists of the following components:
1) A set of problems P ((1) with the class of admissible a, b, f).

2) The set S of the numerical solutions (piecewise linear functions of

1
0)-

3) The set of states X (the set of all permissible meshes A).
4) A set of information I (the pointwise values of a, b, f) and an
information operator N related to the algorithm N: Nx P x X x § + T,

(The subroutines which obtain the information of the problem p ¢ P at n-th

stage, n € N, using the meshes &y € X and FE solution u; €5, i< n-l).
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5) Transition operator T, T: Nx I + X, (Using information I the
transiticn operator creates a new mesh,)

6) Solution operator I, R: X x I +S, (Obtaining the FE solution for
the new mesh using information of the problem.)

7) A set of trajectories T which consists of all sequences

w = ((Ao,uo), (Al,ul), eee Je

An algorithm maps any element P € P into a trajectory w € T, We mention
that we did not include (for simplicity) the stopping criterion in the
process,

A feedback algorithm is useful only if it performs better than any non-
feedback one for the set P. In [1] and [14] the notion of a performance

measure was introduced. A performance measure p is a map from the set of

trajectories into RI.
A feedback algorithm is said to be adaptive (relatively to P,
S, X, u) 1if it is optimal for the performance measure p. (In general such
optimal algorithm does not have to exist for some particular (P, S, X, u).
Several concrete performance measures were introduced in [1] for the

finite element method. The convergence measure U was defined as binary

measure u: I + {0,1}. If the solution converges then u(w) = 1, otherwise

u(w) = 0. A convergence rate measure was defined as follows: For any

problem P € P let ¢(n,P) be the minimal error obtainable by the mesh 4
with m + 1 nodal points, i.e., dim(S) = m where S 1is the finite element

space for given mesh. The particular feedback method is optimal wu(w) =1 1f

e(A,,P)
(2.2) < K(P), j=0,1,2,...

3

¢(m(4,),P)
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i.e., when the error € of the finite element solution on the sequence of
meshes Aj constructed by the algorithm is of the same magnitude as the theo-
retically smallest possible error ¢ for all P € P. In [9] we described
some concrete algorithms which are adaptive with respect to the convergence
measure (defined above) for the set P, consisting of all problems with

0 < ag < a(x) < a, <, 0< b(x) <b <o and f such that the exact

1 1

solution belongs to Hé.

These algorithms are adaptive with regpect to the convergence rate only
if the set P; 1s restricted to a smaller set P,. This set P, is never-
theless broad enough to include vast majority of problems with practical sig-
nificance. In [9] we have shown an example of P € P;, P ¢ Py such that the
algorithm produces meshes with (2.2) unbounded. Algorithm of a similar type
as discussed in [9] was implemented by the code FEARS [15] and PLTMG [10] in
the two dimensional setting.

In [14) we theoretically analyzed the feedback and adaptivity of some
algorithm based on the hp version. We have proven the adaptivity with re-
spect to the convergence measure for a large class P. The convergence rate
measure was defined slightly different than before. We considered the set
P3 of problems with solutions which are analytic except a finite number of

points xq where the solution is of the type |x - xola, a> .5,

We have shown that for any P € Py and any mesh A and

p-distribution

(2.3) #(n,B) > Const(p) —Lm ¢/ (O +3)0
na/2 0

where

In = /7 - 1)2

and n 1is the number of degrees of freedom (i.e., dimension of the used

finite element space).

.................
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The algorithm which we studied and implemented in [14] leads to an error
2.4) e = const(P)(#(n,P))Y

rith y independent of P and a. Combining (2.3) and (2.4) we immediately
iee that our algoritilm is adaptive with respect to P3 and obviously defined
:he convergence rate measure, We can also readily see that any non—feedback
1lgoritim cannot give an exponential rate of convergence for an arbitrary
sroblem in this set.

Various feedback algorithms appeared in the literature and are available
1s codes. Nevertheless there is no available analysis of the adaptive features
in the sense explained above although numerical experimentation with these

codes can give very good insight and lead to the proper conjectures.

3. A PARTICULAR MODEL PROBLEM
Let us be interested in the nonlinear problem

(3.1a) £ atu”u,m) + b(u,x) = £(x,)) x€I=(0.1)

(3.1b) u(0) = wu(l) = 0

with the aim to find the solution u(x,\) for x € I 1in the given accuracy
t in the H! norm for all 0 < X < Xo. We will describe briefly the main

parts of a feedback procedure for solving (3.1a) (3.1b). Although (3.1) is

one dimensional problem, the main ideas which will be explained here are not
one dimensional and they are being implemented in a two dimensional setting.
The solution is computed by the continuation method using (for a fixed mesh)
adaptive procedures as PITCON (see eg. [17]). The problem (3.1) has scme

common features with the methods for solving parabolic equations. The con~

tinuation parameter g plays analogous role as the time t in the parabolic




oblem and will be called "time" for convenience. Of course there are also
gential differences here too. For more about adaptive procedures for para-
1lic equations we refer e.g. to {11].
In the following we shall discuss a feedback mesh regridding procedure.

is clear that while the "time" parameter XA advances a fixed mesh in
meral cannot work well and the mesh is necessary to be regridded. However,
10 frequent change of mesh also increases the cost of computation. Therefore
 shall situdy the regridding strategy (including the criterion of mesh

lality) as well as the adaptivity in this procedure.

»  THE MESH DENSITY AND OPTIMAL MESH

We now discuss on the optimal mesh for the linearized problems. We
isume that the h-version FEM 1is used for solving the problem, and the poly-
ymial degree of the elements 1Is assumed to be p. For one dimensional case
1is problem was considered in [7], [13], by using the graded meshes.

A graded mesh A 1is obtained by a given grading function g(x) and
itensity m(4) (i.e., number of elements in A). For example, on [0,1],

1e nodal points of a mesh A are
1e1) x; = g i=0,1,2
L] 1 gm » s iy ,ooc,m

ilere g 1is a strictly increasing continuous function with g(0) = 0, g(l) =
v The optimal grading function is directly related to some derivatives of
e function u(x) (see e.g. [7] [8]). We have shown in [13] (see also (8]

)r example), that 1f u(x) = x*, a > .5, the function

g(x) = 5
B F 2;-2
a = &5

(it St e dhape St A LB o e RN T il




he optimal grading function. It is easy to show that in this case

2
; _g;g—l(x) - c|ulP) (297

‘e g-l(x) is the inverse function to g(x). The similar expression holds
jeneral under proper assumptions (see {7] ([8]).

This approach is obviously only one dimensional. Let us modify it so
: it can be easily transfered into more dimensions. For this reason we

L introduce the notion of the mesh density function (briefly the density).

Let J €I be any interval and {Ak} be a sequence of meshes. Let
(,3) be the number of elements of the mesh Ay contained in J and

Jgme that

- m(Ak,j)
3) §(J) = lim ————
Joseo m(Ak)
well defined.

Function E(J) can be extended to a o—-additive set function and we will

ume that it is differentiable. Denote by &§(x) its derivative. This

ns that
§(J)
4) §(x) = lim T—T—
X€J J
|3]+0

sts for any x € I. We will call the function &(x) the mesh density
ction for the sequence of meshes By e If the grading function exists, then

is easy to see that
5) 8(x) = — (x)

hence

6) §(x) = Clu

Il gt it B i e
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TABLE 1.
A m £ X ¥ mesh action Py (k)

1 3.0 | 64 | 0.04003 | 1.3599 | 1.1176 | not 0.XK. regridded

1 3,0 | 48 { 0.04458 | 1.0002 | 1.0591 0.K. 3.7382
2 3.5 | 48 | 0.,04888 | 1.0293 | 1.0114 0.K 2.4349
3 4,0 | 48 | 0.05638 | 1,1069 | 0.9417 | not 0.K regridded

3 4,0 | 55 | 0,04086 | 1.0058 | 1.1063 0.K, 3.1482
4 4,5 | 55 | 0.04222 | 1.0120 | 1.0882 0.K. 2.6894
5 5.0 | 55 | 0.04682 | 1.0746 | 1.0335 0.K. 2.4239
6 5.5 | 55 | 0.05469 1.1803 | 0,9562 | not 0.K. regridded

6 5.5 | 58 | 0.03977 | 1.0180 | 1.1213 0.K. 2.8321
7 6.0 | 58 | 0.03821 1.0023 | 1.1440 0.K. 2.6480
8 6.5 | 58 | 0.03955 | 1.0386 | 1.1244 0.K., 2.5254
9 7.0 | 58 | 0,04330 | 1.1188 | 1.0746 | not 0.K. | intact 2.4417
10 7.5 | 58 | 0.04900 | 1,2320 | 1.0101 | not 0.K. | intact 2.3844
11 8.0 | 58 | 0.,05638 | 1.3689 | 0.9417 | not O.K. regridded

11 8.0 | 57 | 0.03963 | 1.0673 | 1.1232 0.K, 2.6380
12 8.5 | 57 | 0.03452 | 1,0259 | 1,2035 | not O.K., intact 2.5877
13 9.0 | 57 | 0.03099 | 1.0052 | 1,2703 | not O.K. | regridded

13 9.0 | 44 | 0.04460 | 1.0076 | 1.0589 0.K, 2.6540
14 9.5 | 44 | 0,04247 | 1.0003 | 1.0850 0.K. 2.5827
15 | 10,0 | 44 | 0.04083 | 1.0089 | 1,1066 0.K. 2.5254
16 | 11.0 | 44 | 0.03800 | 1.0571 1.0147 0.K. 2.4974

It is possible that the new mesh could be unsuccessful, for example, it
1d cause divergence in the iteration of finding the solution, or it could

e a solution with low accuracy. In these cases one has to adjust the

h., We will not go into detail of the adjusting procedure,
According to our assumption, when considering a process which constructs

imal mesh at each step, the ratio pz(k) = ] 4+ 8 =3, Our feedback

...............
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particular let

10
1 + 10{x - sin A/10]%

1,2) DO(X,X) =

i select the following parameters steering the described feedback process:

error tolerance T = .05
maximal mesh quality indicators Voax 1.2
Xpax = 1.l
the cost control parameters g = 2
Xp = 1.2
the cost exponent u o= 2
the cost regridding factor g = 2

the maximal number of predicted steps k,,., = 10

ie mesh 1s constructed in a binery tree structure to simulate data structure
ied in the two dimensional setting. This means that any node of the mesh can
+ obtained by a successive bisection of elements. The base mesh which is
Xed in the regridding process has level 3 and hence it consits of 8
iterval of the size 1/8.

The results are shown in Table l. We see that the regridding is trigered
' various reasons

a) The error is not acceptable (¢ < 1): see mesh No. 3, 6, 1l.

b) The mesh shape is bad (x > Xpmax)® See mesh No. 1.

¢) The mesh intensity is too high (¢ > wmax): see mesh No, 13,

Sometimes the mesh quality indicators exceed the given criteria but the
)st analysis shows that the mesh 1s better being kept intact, see mesh No. 9,

), 12.

- . - .- . -
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ntensity of the optimal mesh at A (to achieve the given accuracy T).
et Aj, j=1,2,... be the continuation steps produced by PITCON, for

xample. The ideal total cost (in k steps) will be

k
i
10.4) Coorar )) C(mo,r(*j))'
j=0
We will consider the ratio
a
c (k)
10.5) py(k) = ol
c (k)
total

ind the measure W, = 1 1if pz(k) < y (for some given X > 1) for all
¢ > kg, ug = 0 otherwise.

We can also consider the measure with respect to the time inverval
[Al,Azl in an analogue way.

The important question is whether pz(k) <1+686, i.e., the cost of our
feedback 1s less than the cost when the mesh is changed to be optimal at each
3tep.

The adaptivity of the proposed feedback can be analyzed under various
stringent assumptions. Nevertheless we will not go into this analysis.

[nstead, we show a numerical example computed by a code we wrote.

l1. A WUMERICAL EXAMPLE

As we have seen, the entire process is characterized by the (unnormal-
Lzed) density function Do(x,x). We can simulate the process of regridding
assuning that the degree of element p and Dy(x,A) is given., Then for p =

! the error indicator n(I) is given by

(11.1) nf() = 1* [ Ipy(x, )1%ax.
1
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To define properly the measure u;, we have to define exactly the
cost. There are various possibilities. We will adopt the following
definitions:

Let Aj’ j=1,2,... be the continuation steps, Aj be the meshes at
Aj. These meshes are not necessarily different, we assume that the regrid-
dings only occur at Aj s, Vv=1,2,,.. « Then we define the total cost in

v
k continuation steps to be

Kk
(x) = 7 (1 +a,0)(m)

(10.1)
=1 3 k|

CCOtal

where “j =1 {if j = jv (i.e., regridding occurs), aj = 0 otherwise,
and mj = m(Aj) is the intensity of mesh Aj’

We can also consider the cost in certain time interval [AI,AZ]:

(10.2) Cooral (A shy) = ) (1+ aje)C(m

3
A <A<k,

).

The cost of the feedback and non-feedback methods will be denoted by
superscripts a and n respectively, then we define
a
C (k)
(10.3) p (k) = Sotal

Ctotal(k)

and u; =1 1f pl(k) <y (for some given 0 <y < 1) for all k > kg, 1
= 0 otherwise.

An analogue of (10.3) may also be made for the total cost defined by
(10.2).

Another measure u, can compare the cost of the introduced feedback

procedure with the ideal cost of the method when optimal meshes are used at

every step (neglecting the cost of regridding). Let L T(A) be the
1]

-




10. THE ADAPTIVITY OF THE REGRIDDING PROCESS

It is clear that the process described in Section 9 is a feedback
process. We will first include it into the frame discussed in Section 2. The
set of problems is defined by the set of functions a, b, £ in (3.la). The
solution set is the finite element space of elements of degree p on the
meshes A. The states are the pairs (A,A) where A is the mesh at time
A. The information operator consists of a set of subroutines which evaluate
the involved functions to obtain necessary information described in the last
section. The transition operator makes decision of regridding and construct
new meshes when necessary. The solution operator then computes the finite
element solution on the given mesh .

In solving the nonlinear problem by continuation (for example, by
PITCON), another feedback process is involved. We shall not address here the
question of adaptivity of this continuation process.

The regridding process itself is very complex. For the adaptivity
analysis various performance measures can be considered. Numerical exper—
iments can be useful for formulation some conjectures for theoretical
investigations.

Like the convergence measure discusssed earlier, we introduce here a
natural performance measure Bg such that if all solutions in the trajectory
satisfy given tolerance t (which may be restricted to some range, say 12—
10Z2), then uo = 1, otherwise Mg = 0. The algorithm is said to be adaptive
with respect to uy 1if ug = 1 for all problems P ¢ Poe It is clear that
our algoritim is adaptive for a large class of problems PO'

Another natural performance measure compares the cost of our feedback
procedure with the cost of the computation when fixed mesh is used. We define

the measure u, 80 that L W 1 1if the cost of the feedback 1is not larger

than the cost of the fixed mesh approach. Otherwise u; = 0.
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for the current
Ao find ideal den-
sity and mesh qua-
lity indicators.

next continuation
step, find solution
and error indicators.

no
find the expected
density
De(x,1) (A > Ay)
through a cost ana-
lysis determine the
redicted density-
znd intensity Y adjust the
) predicted
Dp(x)v oy mesh.
yes
no
is the new

?
mesh regridded? mesh successful?

yes

recompute solution
at AO and check the
nev mesh,
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(8.4) C; = Clmg,q)

where 09,1 is the intensity of optimal mesh at A,.
Assuming that the average step A\A for X (which is selected in a

feedback fashion) will stay the same as in the past, we will compute a

g o0)

(A2 (x)
and the corresponding intensity m as in the last

density D

y P
section for each A = AO + kAx, k =0,1,2,... . The predicted cost for this
mesh is then

(A1)
k 0’
¢, = C(m (A = Ay + KAL),

This procedure is proceeded until k = k”:

k’
Cp > min{Cc/K, chi},
and
old
K = K ci
’
1 Ci
and Kis Ko > 1 are given a-priori, Czld is the ideal cost when last mesh
regridding occurred. The predicted mesh will be constructed from the density
(hg) (Ag2)
D (x) and m with A = AO + (k” - 1)ax,

Roughly speaking, the meaning of the above selection is that the cost of
a new mesh should not exceed too much the cost of the ideal mesh and should

take into account the change of the optimal mesh.

9. THE MAIN FLOW OF REGRIDDING PROCESS

Here we briefly show the main flow of the feedback algorithm for the

design of the mesh,




6) Make a cost analysis for determining A;. (See Section 8.)
7) Compute the uncertainty function o¢(x,A) of the prediction by
comparing the expected density with the ideal one (after being computed).

8) Design the new mesh if the current mesh has to be changed.

8. THE COST ANALYSIS

The cost of the adaptive mesh consists of two parts:

1) The cost of computation by the continuation method (for example by
PITCON) per step:

(8.1) C = C(m) = nm".

where C(m) 1is the cost function which is supposed to be only depending on the

intensity.
2) The cost of regridding the mesh which will be assumed as a multiple

of the cost of the solution:

(8.2) Co = oc(m) .

A mesh is considered to be changed if either it cannot give the required
accuracy or it costs too much (although the error is admissible)., The first
case 1s characterized by ¢ < 1, and the latter is determined by the
criteria x > Xpax ©°F X > ¢max when Xpax and wmax are given a-priori.

We define the cost for the current mesh (at Ag)

= if x <1,
(8.3) Cc =

C(mc) otherwise,
where m, 1s the intensity of the current mesh.

Furthermore, the ideal cost C; (at 1) 1s given by
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turbance of an optimal mesh causes changes of accuracy of second degree (see
[71), we do not need to know the optimal demsity too accurately. It is
computationally advantageous to work only with meshes which have density given
on the base mesh. For example, if the elements of degree p = 2 are used for
the computation of the solution, we will assume that the density is given by
the same 2 degree element function on the base mesh and the density is given
by its values in the nodal points of the base mesh.

The prediction of the density goes as follows:

1) Define piecewise constant function 50(x,x), A< AO on the mesh

A so that
1

" J 2p+l
Do(x,x) = HLT%T—- . x€J
2) By a fitting procedure construct the (unnormalized) density function

Dg(x,A), called ideal density, on the base mesh.

3) Given function Do(x,k) for A < A (which is given by its values

0

in the nodal points of the base mesh), extrapolate it for X > Ao (by an

extrapolation technique which preserves, for example, its positivity), and

denote it by D,(x,A) (called the expected density).

4) A new mesh, called predicted mesh, is designed for AO < A< Al’ by

(6.2)

(Agsr))
Dp (x) = max De(x,A).
AO<A<AI
(Agshy)
5) Compute the intensity m leading to the prescribed accuracy
using mesh Dp (x)

1 2p+l
(Anshy) -= (Annhy) (b (x,))) 1/2p
a O Y = gpax 1 P ( D, %1 (x)dx) [[ —= dx]
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and
(A, ,1,)
(X552 D, 01 (x)
(6.3) 60 (x) = -—(TO—")‘—)—'.

“o

Furthermore, the intensity used in [AO,AII will be determined by

m = max 7p ( VW) 7 dx) .
X0<A<X1 T 1 (6 071 (x))

7. DENSITY PREDICTION
The problem (3.1) is solved by a continuation method with respect to the

parameter A. This means that we know the approximate solution for X < AO

and want to predict the behaviour of the solution for A > XO and design an

optimal mesh for AO <A< Al’ where 1i; will be properly chosen. The

prediction process is essentially a pattern recognition which is composed by

learning, classification, prediction and correction. Some ideas of pattern
recognition were used in [11] where the concepts of the shape and intensity of
a mesh were introduced.

As we have seen above the shape of the mesh is determined by its
density. The function Do(x,l) defined by (4.10) is an optimal density up to
a multiplicative factor %—. It also contains the information about optimal

0
intensity using (5.5) with its approximate version

L, 1L e :
- P, 2p P 2ptl
L T W T ({ (Do(x))

We will approximate Dp(x) by a (finite element) function on a relatively

coarse mesh called base mesh which does not change with 1. Because a per-
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Using the formulae of Section 4 we get

2p+1
‘ (6,(x))
(5.3) m2p12 ] wgp-'-l ——0-—-2—-——dx
T I &(x)“P
(8,(x)) 2P
(5.4) m2p52 - w§p+1 9 > dx
¢ : I 6(x)°P
(5.5) mgftrz ~ w§p+1.
Hence we have
1/p 1/p
T T
(5.6) v~ (E' = [ - 1/2]
(1 (M)
2p+l
and
(eo("))zw1 Yap
(5.7) X ™ ——-—'z——dx
I(8(x)) “P g

6. OPTIMAL MESH FOR SIMULATANEOUS APPROXIMATION

In previous sections we discussed the problem of the optimal mesh for
approximating u(x,A) for one fixed value of A. We would like to get an
optimal mesh for set of functioms u(x,A), A € (AO,AI). To this end we could

use (4,.14) and minimize

(so(x,x))ZP+1
dx

(6.1) pax m§P+1(x) .
Ag<A<A, I (s(x))°P

among all densities &6(x). To find such &(x) 1is not easy. Hence approxi-

mately we will take

(6.2) Dy (x) = max D, (x,A)

.......
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AR - AR » et
R S N L A R A AR AR NN AR AN IO AT I, T VLR, . WAL PRI GRS

........................................................



‘ '8 C - TR~ - i Lol M b gas g SRl S etk Madh Pad SRl i oy Sierdae el v TR N TR e Y. .

il Y - - . -l e e A W w4 - - - . T e T et Ve e T4 T T T e LR

- 11

3 §. + ¢

: 0 0
3 (4.15) Spol® = T o

For large uncertainty o¢g >> 1 we get by this technique a nearly uniform

mesh.

A e, b, b

Finally let us mention that under sufficiently strict assumptions our
heuristic reasoning could be given a rigorous base. In addition, we underline
that although we explained the approach in one dimension, it is valid in more

dimensions, too.

5. THE MESH QUALITY INDICATORS

In the feedback process we would like to use one mesh for largest pos-
sible range of X because of the cost consideration. This leads to the need
of quantitative expression of the quality of the mesh. We will characterize
the quality by two indicators. The first one is related to the intensity and
second to the density.

First, we let

<
]
B|OB

(5.1)
T

where m, {s the intensity of the current mesh and m; the intensity of the
E mesh, having the same density, achieving (exactly) €(A) = t. For determining
L (4.14) 1is used. If €(A) > t, then the mesh is not acceptable and we
have ¢y < 1. If ¢ >> 1, then the used mesh is too fine and the cost can be
too high.

We define the second indicator by

(5.2) X = LS

PN 2t DR R

where my . is the intensity for the optimal mesh and accuracy 1. Clearly
?

we have x > 1, and x >> 1 1indicates that the current mesh has a density

LR o W N PN

which is too far to be optimal.




the elememts of the mesh Ak‘ Then

so(x)
(4.11) §y(x) =
w
0
is the density of the optimal mesh where
(4.12) Wy ™ f Do(x) dx.

I
Do(x) will be called the unnormalized optimal density.
Let us assume that the global error eZ(A) can be written in the form

(4.13) ) = ) n2(n.
JeA

Then for the density &(x) and the intensity m = m(A) we have the relation

2p+l
(6,(x))
(4.14) 1im n?Pe2(a) = w(z)p“ -9

2 dx.
mrw 1 §(x) P

(4.14) expresses the error for the mesh A with the density 6(x) through

the optimal density. Obviously the choice &(x) = §3(x) minimizes the

expression on the right hand side of (4.14) and gives the minimal value w§p+1

(because f Go(x)dx = 1), In practice we express Go(x) by the error indica-
tors and (4.10) (4.11), Nevertheless, the error indicators (especially in
more dimensions) are showing a dispersion and a smoothing technique has to be
used. In addition it is useful to assume that we have in (4.14) for disposi-
tion Go(x) + ¢(x) 1instead 6g(x) only where ¢(x) expresses the uncer-
tainty in the determination of Go(x) which can be determined by the smooth-
ing process mentioned above; for example, we can assume that |o(x)] < Pq e

Now the optimal mesh under this uncertainty minimizes (4.14) for the worst

case of the uncertainty. This leads to the density Goo(x)




with the constant C such that

(4.7) [ 8(x) dx = 1.
I

The notion of the density function can be obviously easily extended to
n~dimensions.

If the density function is given, then it is not hard go construct a mesh
with this density 6(x) and given intensity m(A). We shall assume that all
meshes we are dealing with have a density function.

Let us assume now that an error indicator n(J) of every element

J € A of the mesh is computable and it is such that

(4.9) n(J) (1 +0(1))

fele

where ne'E(J) is the (local) error (in the energy norm) of the interpolant

of u on J. Then we get

2
n"(J) _ (pt+l)
(4.9) I}TTO |J|2p+l Clu ()|
x€J

with a~priori known constant C. See [8] for more details. Similar situation
occurs in more dimensions. For the error indicators in two dimension we refer
to [2].

The error indicator gives through (4.9) the information about the deriva-
tive of the approximated function u and hence also the density for the

optimal mesh. To this end we define

T
(4.10) Dy(x) = lim "‘Jg
J|+0
x€J

and assume that Do(x) can be well approximated by the error indicators of
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regridding process obtains the ratio py(k) ~ 2.5 (see Table 1). Thus it is
more efficient that the previous one.

The process we have shown is of course not the only possible approach and
it needs detailed theoretical and numerical studies in the gpirit we explained
above, We have shown it as an example of application of principles of studying

the adaptivity.

12. CONCLUSIONS

We have shown the main questions associated to the design and analysis of
f the feedback procedures. The theoretical analysis is often not easy. Never-
theless, every feedback algorithm could be conjectured to be adaptive with

respect to some measures and class of problems and studied theoretically and

experimentally in the direction we explores.

-
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

® To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

e To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

e To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to governmment
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

° To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern—-
ment agencies such as the National Bureau of Standards.

e To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. BabuBka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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